Characterization and reactivity of biogenic manganese oxides for ciprofloxacin oxidation.

نویسندگان

  • Jinjun Tu
  • Zhendong Yang
  • Chun Hu
  • Jiuhui Qu
چکیده

Biogenic manganese oxides (BioMnOx) were synthesized by the oxidation of Mn(II) with Mn-oxidizing bacteria Pseudomonas sp. G7 under different initial pH values and Mn(II) dosages, and were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and UV-Vis absorption spectroscopy. The crystal structure and Mn oxidation states of BioMnOx depended on the initial pH and Mn(II) dosages of the medium. The superoxide radical (O(·-)2) was observed in Mn-containing (III/IV) BioMnOx suspensions by electron spin resonance measurements. BioMnOx(0.4)-7, with mixed valence of Mn(II/III/IV) and the strongest O(·-)2 signals, was prepared in the initial pH 7 and Mn(II) dosage of 0.4 mmol/L condition, and exhibited the highest activity for ciprofloxacin degradation and no Mn(II) release. During the degradation of ciprofloxacin, the oxidation of the Mn(II) formed came from biotic and abiotic reactions in BioMnOx suspensions on the basis of the Mn(II) release and O(·-)2 formation from different BioMnOx. The degradation process of ciprofloxacin was shown to involve the cleavage of the hexatomic ring having a secondary amine and carbon-carbon double bond connected to a carboxyl group, producing several compounds containing amine groups as well as small organic acids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of environmental conditions on kinetics of arsenite oxidation by manganese-oxides

BACKGROUND Manganese-oxides are one of the most important minerals in soil due to their widespread distribution and high reactivity. Despite their invaluable role in cycling many redox sensitive elements, numerous unknowns remain about the reactivity of different manganese-oxide minerals under varying conditions in natural systems. By altering temperature, pH, and concentration of arsenite we w...

متن کامل

Chromium(iii) oxidation by biogenic manganese oxides with varying structural ripening.

Manganese (Mn) oxides, which are generally considered biogenic in origin within natural systems, are the only oxidants of Cr(iii) under typical environmental conditions. Yet the influence of Mn biooxide mineral structural evolution on Cr(iii) oxidation under varying geochemical conditions is unknown. In this study we examined the role of light, organic carbon, pH, and the structure of biogenic ...

متن کامل

Geomicrobiology of manganese(II) oxidation.

Mn(II)-oxidizing microbes have an integral role in the biogeochemical cycling of manganese, iron, nitrogen, carbon, sulfur, and several nutrients and trace metals. There is great interest in mechanistically understanding these cycles and defining the importance of Mn(II)-oxidizing bacteria in modern and ancient geochemical environments. Linking Mn(II) oxidation to cellular function, although st...

متن کامل

The study of Oxidation Behavior of AISI 439 Steel at the Presence of Manganese Oxides for the Application in Solid Oxide Fuel Cells

Long–term stability and oxidation resistance of AISI 439 ferritic stainless steel used as interconnects in solid oxide fuel cells can be improved by use of a protective coating. In this study the pack cementation method was employed to coat AISI 439 ferritic stainless steel with manganese. Isothermal oxidation was conducted at 800 ºC for 200 hours in static air to investigate the role of coatin...

متن کامل

Eco-Friendly Synthesis and Characterization of Ni-Si Nanoparticles Mixed Oxides as Catalyst for

The nanoparticles of Ni–Si mixed oxides were prepared by co-precipitation method using nickel nitrate; Ni(NO3)2 6H2O and tetraethylorthosilicate (TEOS). The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and hydrogen temperature program reduction (H2-TPR). The results revealed that Ni–Si mixed oxides particles were obtained with average particle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental sciences

دوره 26 5  شماره 

صفحات  -

تاریخ انتشار 2014